
Sébastien Mathier

www.excel-pratique.com/en

Variables :

Variables make it possible to store all sorts of information.

Here's the first example :

'Display the value of the variable in a dialog box

Sub variables()

 'Declaring the variable

 Dim my_variable As Integer

 'Assigning a value to the variable

 my_variable = 12

 'Displaying the value of my_variable in a MsgBox

 MsgBox my_variable

End Sub

This first line of code declares the variable (this is generally placed at the beginning of the procedure).

Dim my_variable As Integer

Dim : declares the variable

my_variable : the name chosen for this variable (no spaces allowed)

As : declares the variable's type

Integer : variable type

Declaring these variables is not absolutely necessary, but it is recommended. It makes it easier to find them, can help

resolve problems, etc. In short, it's a good idea to get in the habit of declaring variables correctly.

A variable's type indicates the nature of its contents (text, numbers, date, etc.).

And then a value is given to the variable :

my_variable = 12

Finally, the value of the variable is displayed in a dialog box :

MsgBox my_variable

MsgBox "value" is the simplest way to display a value in a dialog box.

We'll go into more detail about dialog boxes in later lessons ...

The code will have this result :

If you don't understand what the point of using these variables is yet, don't worry, the examples introduced in the

following lessons will prove their usefulness ...

The types of variables :

Name Type Details Symbol

Byte Numerical Whole number between 0 and 255.

Integer Numerical Whole number between -32'768 and 32'767. %

Long Numerical Whole number between - 2'147'483'648 and 2'147'483'647. &

Currency Numerical
Fixed decimal number between -922'337'203'685'477.5808 and
922'337'203'685'477.5807.

@

Single Numerical Floating decimal number between -3.402823E38 and 3.402823E38. !

Double Numerical
Floating decimal number between -1.79769313486232D308 and
1.79769313486232D308.

#

String Text Text. $

Date Date Date and time.

Boolean Boolean True or False.

Object Object Microsoft Object.

Variant Any type Any kind of data (default type if the variable is not declared).

Some examples with different types of variables :

'Example : whole number

Dim nbInteger As Integer

nbInteger = 12345

'Example : decimal number

Dim nbComma As Single

nbComma = 123.45

'Example : text

Dim varText As String

varText = "Excel-Pratique.com"

'Example : date

Dim varDate As Date

varDate = "06.04.2012"

'Example : True/False

Dim varBoolean As Boolean

varBoolean = True

'Example : object (Worksheet object for this example)

Dim varSheet As Worksheet

Set varSheet = Sheets("Sheet2") 'Set => assigning a value to an object variable

 'Example of how to use object variables : activating the sheet

 varSheet.Activate

The symbols in the table above can be used to shorten our variable declarations.

For reasons of readability, we will not be using these in the lessons, but here is an example anyway :

Dim example As Integer

Dim example%

These two lines are identical.

Comment : it is possible to force the declaration of variables by putting Option Explicit right at the beginning of a module (this
way an error message will be displayed if you have forgotten to declare variables).

Practice exercise :

We will now create, step by step, a macro that retrieves a last name from cell A2, a first name from cell B2, an age from

cell C2, and displays them in a dialog box.

Source file: variable_exercise.xls

We'll begin by declaring the variables (all on the same line, separated by commas) :

Sub variables()

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer

End Sub

Then we assign values to the variables using Cells :

Sub variables()

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer

 'Variable values

 last_name = Cells(2, 1)

 first_name = Cells(2, 2)

 age = Cells(2, 3)

End Sub

Finally, we'll display the results in a dialog box, using the & operator to join the values (as in Excel).

Sub variables()

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer

 'Variable values

 last_name = Cells(2, 1)

 first_name = Cells(2, 2)

 age = Cells(2, 3)

 'Dialog box

 MsgBox last_name & " " & first_name & ", " & age & " years old"

End Sub

The results :

The next step is to display in a dialog box the row from the table that is indicated by the number in cell F5.

This is the goal :

Take a moment to try to solve this problem yourself before looking at the solution below ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The solution :

Sub variables()

 'Declaring variables

 Dim last_name As String, first_name As String, age As Integer, row_number As Integer

 'Variable values

 row_number = Range("F5") + 1

 last_name = Cells(row_number, 1)

 first_name = Cells(row_number, 2)

 age = Cells(row_number, 3)

 'Dialog box

 MsgBox last_name & " " & first_name & ", " & age & " years old"

End Sub

Adding a variable :

'Declaring variables

Dim last_name As String, first_name As String, age As Integer, row_number As Integer

The variable row_number will now take the value of cell F5, to which we have added 1 (so that we don't get data from

the first row, which contains the table's titles), so that row_number will have the row number of the cells that we are

interested in as its value :

row_number = Range("F5") + 1

All that's left to do is to replace the row number in the Cells command with our variable :

last_name = Cells(row_number, 1)

first_name = Cells(row_number, 2)

age = Cells(row_number, 3)

Now our macro displays the row that we're interested in from the table.

By the way, please note that we can reduce this procedure to a single line of code :

Sub variables()

MsgBox Cells(Range("F5")+1,1) & " " & Cells(Range("F5")+1,2) & ", " & Cells(Range("F5")+1,3)

& " years old"

End Sub

Although the code will work perfectly, it is much less readable than the previous version and more difficult to rework (to

make sure that our code is easy to understand, we won't be abbreviating it in this way in these lessons).

'Assigning values to the 5 cells

array1(0) = "Value of cell 0"

array1(1) = "Value of cell 1"

array1(2) = "Value of cell 2"

array1(3) = "Value of cell 3"

array1(4) = "Value of cell 4"

'Assigning values to three colored cells

array2(0, 0) = "Red cell value"

array2(4, 1) = "Green cell value"

array2(2, 3) = "Blue cell value"

Arrays :

While variables only allow us to store one value each, arrays make it possible to store many values and they work

almost exactly the same way.

Here are some examples of declarations:

'Sample variable declaration

Dim var1 As String

'Sample 1 dimensional array declaration

Dim array1(4) As String

'Sample 2 dimensional array declaration

Dim array2(4, 3) As String

'Sample 3 dimensional array declaration

Dim array3(4, 3, 2) As String

The 1 dimensional array :

'Sample 1 dimensional array declaration

Dim array1(4) As String

There is only one number in parentheses in this declaration, which means that it is a one dimensional array. This

number sets the size of the array. array1(4) is an array in which the cells are numbered from 0 to 4, which means that it

is an array with 5 cells:

Important : the first cell in an array is numbered 0.

Another example, a two dimensional array :

'Sample declaration of a 2 dimensional array

Dim array2(4, 3) As String

Constants :

Like variables, constants can be used to store values, but the difference is that they can't be modified (thus their name).

For example, we could add a constant to avoid having to repeat a number like 6.87236476641 :

Sub const_example()

 Cells(1, 1) = Cells(1, 2) * 6.87236476641

 Cells(2, 1) = Cells(2, 2) * 6.87236476641

 Cells(3, 1) = Cells(3, 2) * 6.87236476641

 Cells(4, 1) = Cells(4, 2) * 6.87236476641

 Cells(5, 1) = Cells(5, 2) * 6.87236476641

End Sub

This makes the code much easier to read (important parts in particular) and makes it much easier to change the value

of the constant, should you need to :

Sub const_example()

 'Declaration of a constant + assignment of value

 Const ANNUAL_RATE As Double = 6.87236476641

 Cells(1, 1) = Cells(1, 2) * ANNUAL_RATE

 Cells(2, 1) = Cells(2, 2) * ANNUAL_RATE

 Cells(3, 1) = Cells(3, 2) * ANNUAL_RATE

 Cells(4, 1) = Cells(4, 2) * ANNUAL_RATE

 Cells(5, 1) = Cells(5, 2) * ANNUAL_RATE

End Sub

The scope of variables :

If a variable is declared at the beginning of a procedure (Sub), it can only be used within this same procedure. The

value of the variable will not be maintained after the execution of the procedure.

Sub procedure1()

 Dim var1 As Integer

 ' => Use of a variable only within a procedure

End Sub

Sub procedure2()

 ' => var1 cannot be used here

End Sub

In order to use a variable in any of the procedures within a module, all you have to do is declare it at the beginning of

the module. And if you declare a variable this way, its value will be maintained until the workbook is closed.

Dim var1 As Integer

Sub procedure1()

 ' => var1 can be used here

End Sub

Sub procedure2()

 ' => var1 can also be used here

End Sub

If you want to be able to use a variable in any module, on the same principle as the previous example, all you have to

do is replace Dim with Global :

Global var1 As Integer

To maintain the value of a variable after the execution of the procedure in which it appears, replace Dim with Static :

Sub procedure1()

 Static var1 As Integer

End Sub

To maintain the values of all the variables in a procedure, add Static before Sub :

Static Sub procedure1()

 Dim var1 As Integer

End Sub

Create your own type of variable :

We won't spend very much time on this point. Here is an example :

'Creation of a variable type

Type guests

 last_name As String

 first_name As String

End Type

Sub variables()

 'Declaration

 Dim p1 As guests

 'Assigning values to p1

 p1.last_name = "Smith"

 p1.first_name = "John"

 'Example of use

 MsgBox p1.last_name & " " & p1.first_name

End Sub

© Excel-Pratique.com - PRIVATE USE ONLY

